Copied to
clipboard

G = C32×D7order 126 = 2·32·7

Direct product of C32 and D7

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32×D7, C216C6, C73(C3×C6), (C3×C21)⋊3C2, SmallGroup(126,11)

Series: Derived Chief Lower central Upper central

C1C7 — C32×D7
C1C7C21C3×C21 — C32×D7
C7 — C32×D7
C1C32

Generators and relations for C32×D7
 G = < a,b,c,d | a3=b3=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

7C2
7C6
7C6
7C6
7C6
7C3×C6

Smallest permutation representation of C32×D7
On 63 points
Generators in S63
(1 62 34)(2 63 35)(3 57 29)(4 58 30)(5 59 31)(6 60 32)(7 61 33)(8 43 36)(9 44 37)(10 45 38)(11 46 39)(12 47 40)(13 48 41)(14 49 42)(15 50 22)(16 51 23)(17 52 24)(18 53 25)(19 54 26)(20 55 27)(21 56 28)
(1 20 13)(2 21 14)(3 15 8)(4 16 9)(5 17 10)(6 18 11)(7 19 12)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)(57 59)(60 63)(61 62)

G:=sub<Sym(63)| (1,62,34)(2,63,35)(3,57,29)(4,58,30)(5,59,31)(6,60,32)(7,61,33)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,41)(14,49,42)(15,50,22)(16,51,23)(17,52,24)(18,53,25)(19,54,26)(20,55,27)(21,56,28), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)>;

G:=Group( (1,62,34)(2,63,35)(3,57,29)(4,58,30)(5,59,31)(6,60,32)(7,61,33)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,41)(14,49,42)(15,50,22)(16,51,23)(17,52,24)(18,53,25)(19,54,26)(20,55,27)(21,56,28), (1,20,13)(2,21,14)(3,15,8)(4,16,9)(5,17,10)(6,18,11)(7,19,12)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62) );

G=PermutationGroup([[(1,62,34),(2,63,35),(3,57,29),(4,58,30),(5,59,31),(6,60,32),(7,61,33),(8,43,36),(9,44,37),(10,45,38),(11,46,39),(12,47,40),(13,48,41),(14,49,42),(15,50,22),(16,51,23),(17,52,24),(18,53,25),(19,54,26),(20,55,27),(21,56,28)], [(1,20,13),(2,21,14),(3,15,8),(4,16,9),(5,17,10),(6,18,11),(7,19,12),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55),(57,59),(60,63),(61,62)]])

C32×D7 is a maximal subgroup of   C32.F7  D7⋊He3

45 conjugacy classes

class 1  2 3A···3H6A···6H7A7B7C21A···21X
order123···36···677721···21
size171···17···72222···2

45 irreducible representations

dim111122
type+++
imageC1C2C3C6D7C3×D7
kernelC32×D7C3×C21C3×D7C21C32C3
# reps1188324

Matrix representation of C32×D7 in GL3(𝔽43) generated by

3600
060
006
,
600
010
001
,
100
0421
0339
,
4200
0420
0331
G:=sub<GL(3,GF(43))| [36,0,0,0,6,0,0,0,6],[6,0,0,0,1,0,0,0,1],[1,0,0,0,42,33,0,1,9],[42,0,0,0,42,33,0,0,1] >;

C32×D7 in GAP, Magma, Sage, TeX

C_3^2\times D_7
% in TeX

G:=Group("C3^2xD7");
// GroupNames label

G:=SmallGroup(126,11);
// by ID

G=gap.SmallGroup(126,11);
# by ID

G:=PCGroup([4,-2,-3,-3,-7,1731]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32×D7 in TeX

׿
×
𝔽